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On the vertical transport due to fingers in 
double diffusive convection 
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(Reoeived 12 April 1971 and in revised form 8 March 1972) 

Salt fingering across a density interface produced by sugar and salt is investigated 
experimentally for varying values of initial concentrations and for times suf- 
ficiently long to observe the r6gimes of growth, equilibrium and final decay. 
Simultaneous measurements of sugar and salt concentrations and interface 
geometry are made. Calculations based on Stern’s collective instability model 
allow explicit evaluation of the coefficients of the $-law for the sugar flux in 
the form suggested by Stern & Turner (1969) for the equilibrium regime. The 
results are verified by the experimental data. Predictions of the finger wave- 
lengths from this model are in general agreement with the results of previous 
authors, while the flux-law coefficient is an order of magnitude smaller. It is 
concluded that the collective instability mechanism is an adequate physical 
description of the salt-finger mechanism. 

1. Introduction 
A fluid system vertically stratified by any two diffusing substances can be 

inherently unstable even when the density decreases upwards (Stommel, Arons & 
Blanchard 1956; Stern 1960; Turner & Stommel 1964; Walin 1964). If the faster 
diffusing substance ( T )  has a gravitationally stable distribution and the slower 
diffusing substance (X) has a gravitationally unstable distribution, then a 
necessary condition for instability to infinitesimal perturbations is 

where aS/azl and la aT/azI are the magnitudes of the vertical density gradients 
due to X and T respectively, Ks and K ,  are their respective diffusion coefficients, 
a = p o l  ap/aT and P = po l  ap/aX, where po is some constant reference density 
of the fluid. The resulting motion is the diffusion-driven ‘salt-finger ’ phenomenon 
described by Turner (1967). 

Stern (1969) presented an equilibrium model of the salt-finger structure and 
examined its stability to a larger scale internal gravity wave perturbation. His 
analysis was limited to the case in which the diffusing ‘substances’ are heat ( T )  
and salt (X), and since K,/K, PZ in this case, he assumed K,  = 0,  essentially 
neglecting the &balance equation. Subsequent laboratory experiments (Stern & 
Turner 1969; Shirtcliffe & Turner 1970) showed that difficult heat control 
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problems and lateral fluxes of heat could be eliminated by using sucrose ( S )  
and NaCl (T) as the diffusing substances. In  this case, Ks/KT E 4 and the X- 
balance equation cannot be neglected. 

The present paper describes a generalization of Stern’s model to the latter 
case in which K,  is not neglected. The next section presents a summary of the 
theoretical ideas and an explicit derivation of the ‘+-law’ for the S-flux in the 
form suggested by Stern & Turner. Subsequent sections describe some experi- 
ments using sugar and salt, presenting measurements which support the theo- 
retical ideas. 

2. Theoretical considerations 
The equilibrium model 

We consider a viscous incompressible fluid in a region characterized by vertical 
gradients of S and T, under the condition (1.1). Cartesian co-ordinates (x,y, z )  
are employed, with z positive upward. It is convenient to cast the equations in 
terms of the density fields aT and pS in order to render S and T commensurate. 
The equations below are written in the form for two solutes, but may be changed 
to the heat-salt system simply by changing the sign of a. 

Invoking the Boussinesq approximation, the equations of motion for per- 
turbations in a system characterized by vertical velocities only (w positive 
upward) are 

V V ~ W  = 9 Ap/po, K,V;(aT) = - wTZ, (2 . lu ,  b)  

KBV;(pX) = tugz, Ap/po = aT +pX, (2 . lc ,  d )  

where Sz = ( B  lJS/axl and Tz = la aT/azl are assumed constant, V$ is the horizontal 
Laplacian and v is the kinematic viscosity. The solutions of (2.1) can be written as 

w = w,sin Cx/L) sin (y/L), 

PS = - PIS, sin (x/L) sin ( y / L ) ,  

( 2 . 2 4  

(2.2c) 

where L is the horizontal wavelength associated with the fingers. This is the 
wave form when the finger cells are assumed square in horizontal cross-section, 
a good approximation in view of the results of Shirtcliffe & Turner (1970). 
Substitution of (2.2) into (2.1) leads to the following relations: 

aT = aTo sin (x /L)  sin ( y /L ) ,  (2.2b) 

L = (gS2/4Esv)-i (1 -KsT*/KTSz)-*, 

w O  = (!?/2v) (pSO) L2(1 -KS’z/KTSz), 

(2.3) 

(2.4) 

aTo/pS0 = KsTz/KT Sz. ( 2 . 5 )  

The vertical flux of S (associated vertical buoyancy flux in cm/s) is 

L L  

0 0  
PF, = L-2 f 1 wpX dx dy, ( 2 . 6 ~ )  

or pFs = (g/8v) (~AS’,)~L~(I - K,pz/KTsz). ( 2 . 6 3 )  
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uFT, the vertical buoyancy flux of T, may be calculated in a similar way, with 
the result that the ratio of T-flux to S-flux is predicted to be 

aPT/pFs = K,Te/KTRz. (2.7) 

It must be emphasized that the above model is a two-dimensional solution of 
the steady-state Boussinesq equations of motion and may be expected to apply 
only when conditions are very near critical for the onset of fingers. Since we are 
considering a system unlimited in vertical extent, the restriction to near-critical 
conditions may be expressed as e -+ 0, where e > 0 is defined by the relation 

Physically, as e increases, the system becomes more and more supercritical with 
nonlinear and non-equilibrium effects becoming important. It is reasonable to  
expect (Snyder 1969; Snyder & Lambert 1966) that in the fhite amplitude 
regimes linearized predictions of wavelengths and wave forms will agree fairly 
well with observations, while the amplitudes will be significantly modified by 
nonlinear effects. On this basis, (2.3)) (2.4) and (2.6b) should be correct inform, 
but the amplitudes must be determined by experiment and/or further refine- 
ments using nonlinear theory. The experiments described subsequently must be 
considered highly supercritical with respect to the formation of fingers. 

Collective instability 

Using the one-dimensional form of the more general equilibrium model described 
in the preceding section, it is possible to consider the stability of a system of 
fingers using the same procedure as Stern (1969). The mechanism of instability 
is pictured as a large-scale (with respect to L) internal wave, which rotates and 
translates groups of fingers collectively through a shearing action. It is assumed 
that the internal wave does not alter the magnitude of the flux, allowing the use 
of (2.6). Under these assumptions, and limiting the calculation to one horizontal 
dimension, a repetition of Stern’s calculation for finite K,  leads to the condition 

for marginal stability, where A is some critical dimensionless number of order 1. 
/?Psis the magnitude of thedownward buoyancy flux of XandaF, is the magnitude 
of the upward flux of T, so that BPS - aFT is the net vertical buoyancy (density) 
flux. Equation (2.9) indicates that the fingers will break down when the net 
unstable buoyancy flux carried by them is greater than or equal to some par- 
ticular fraction of the net density gradient through the finger region, scaled in 
terms of the kinematic viscosity v. This may be compared with Stern’s (1969) 
result (his equation (4.4)), in which a balance between X-flux and T-gradient 
is obtained, the gradient of X having been neglected. 

The addition of a second horizontal dimension does not alter the physics of 
the problem, and (2.9) may be expected on purely dimensional grounds. We have 
chosen to leave the magnitude of A unspecified, since it is not determined ex- 
plicitly either by Stern or by our calculation, and it will be determined experi- 
mentally. The number A contains both a critical angle of rotation of the group 
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of salt fingers and the expression gFz L4/K, v, which Stern took to be 1. Equation 
(2.3) shows that this quantity may vary by at least two orders of magnitude, 
depending on whether one looks at a heat-salt system or a two-solute system. 
Further, the assumptions used to obtain (2.9) obscure its value even more, but 
the physical result of a critical ratio of buoyancy flux to density gradient remains. 
The experiments will show that, at  least for the two-solute case, A is of order 

Vertical j u x  laws 

We now wish to apply these results to the finger interface which forms when a 
layer of fluid of density I + (PAS), is placed over a layer of fluid of density 
1 +  EAT)^, such that 

It is well known (Turner 1967; Stern & Turner 1969; Shirtcliffe & Turner 1970) 
and can be observed that, in such an interface, the fingers are sheared off by 
a larger scale convection above and below, which limits the vertical extent of 
the finger region to a thickness h, without destroying it completely. The finger 
region remains for a period of time which depends on the initial values (EAT) ,  
and (PAS), and then gradually thickens as S is transported downwards and T 
upwards, decreasing a AT and /3 AS. 

If the interface is pictured as a region of stable fingers, and the convecting 
region as one in which the fingers have become unstable, then it is a good approxi- 
mation to consider the S-flux carried by the fingers in the interface region to be 
given by (2.6). I n  the convecting region the fingers have become unstable. In  
that region, or, more rigorously, at  the boundary between that region and the 
finger region, it is reasonable to assume that (PFS - aFT)/v(Fz - Sa) is very close 
to the critical value of A ,  since the fingers are very close to the condition of 
marginal stability. By virtue of continuity, the flux carried by the fingers must 
equal the flux carried through the boundary, and we may thus equate the two 
flux laws (2.6) and (2.9). We now write (2.9) as 

KSIK, < (PAS),/(.AT), < 1. (2.10) 

PFS(1-7) = v.4(Ta-Sa), (2.11) 

where y = aFT/PFS is the empirical ratio of T-flux to 8-flux through the inter- 
face. In  the equilibrium rbgime, y is determined experimentally to  be constant, 
contrary to the prediction of (2.7); the implications of this fact will be discussed 
later. In the sugar-salt experiments, it is reasonable to approximate the gradients 
in the finger region by Tz = a AT/h and sz = p AXlh (see figure 3 below). 

Equations (2.6), (2.3) and (2.11) may now be combined to give 

PSO = r(PAfl), (2.12) 

where r = 112.4(V/Kd ( N -  1)1(1- 7414 (Llh) (2.13) 

and N = a AT//?AS. It can be seen that the amplitude of the S perturbation 
varies and adjusts itself according to the density ratio N ,  the Schmidt number 
v/Ks and the aspect ratio Llh, or the ratio of finger width to finger length. 
Equations (2.13), (2.3) and (2.6) may now be combined to give a flux law which 
agrees in form with equation (1) of the paper by Stern & Turner: 

PFs = C(pAS)+, ( 2 . 1 4 ~ )  
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Run ( a W 0  (BAS), u x 102 (gu2/4Ks)i 7 
9 June 0*100 0.090 1.53 22.6 0.126 

11 June 0.100 0,064 1.30 20.2 0.082 
24 June 0.100 0.080 1.45 21.8 0.117 

9 July 0.096 0.070 1.38 21.0 0.087 

TABLE 1. Summary of initial conditions and experimental parameters for each run. Other 
values used are g = 0.98 x lo3 cm/s2; KS = 0.5 x cm2/s; KT = 1.5 x cm2/s 

where c = (99+f, (2. lab) 

f = 44A(N- l)(l-y)-l(~/K,)f(l-pN)*(L/h)~ ( 2 . 1 4 ~ )  

and p = Ks/K,. Equation (2.14a) is the vertical flux law for a finger interface 
of thickness h, separating two convecting regions when the magnitudes of the 
differences in density across the interface due to S and T are BAS and a A T  re- 
spectively, and L is the horizontal width of the fingers. The expression C will be 
constant only if the sources of S and T are just sufficient to maintain the flux, 
so that EAT, P A S  and L/h do not vary in time. If the system is running down, 
N will vary and L/h will adjust itself such that (2.15) remains valid. In  the sugar- 
salt experiments C is a very slowly varying function of time. 

3. Experiments 
Experiments were carried out at room temperature in a Plexiglas tank 26 cm 

long, 10 cm wide and 25 cm deep. Concentrations used resulted in density dif- 
ferences sufficiently large that small variations in room temperature (2-3 "C) 
could be safely neglected. The general procedure was to prepare separate solu- 
tions of sugar and salt at  the desired densities and allow them to stand overnight 
to establish them a t  room temperature. The amounts of sugar and salt added 
raised the initial densities by amounts (PAS), and (EAT), respectively; the 
specific gravities were measured using hydrometers accurate to within -t 0.001. 
The density of water at room temperature was found to be 1.000 within the 
accuracy of the hydrometers. An approximate initial value of (aAT), = 0.10 
was used in each experiment, and thus the maximum uncertainty in both 
(aAT), and (PAS), was about 2 %. (PAS), was varied from run to run within 
the confines of the salt-finger criteria (1.1) and (2.10). Initial values and other 
parameters are summarized in table I .  

The salt solution was placed in the tank to a depth of 12 cm. The sugar solution 
was then placed carefully over the salt solution using a Styrofoam float wrapped 
with cheese-cloth which allowed the sugar solution to flow in with a minimum 
of disturbance at  the interface. 12 cm of sugar solution were added in this way, 
with total filling times averaging 15 to 20 minutes. When the tank was full, 
the filler float was removed and the tank covered to minimize evaporative 
effects. The apparatus with an interface formed is shown schematically in figure 1, 
and may be compared with figure 1 of Shirtcliffe & Turner (1970), which is 
an actual photograph of such an interface. 
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----- 

FIGURE 1. Schematic diagram of experimental tank showing a kwo-layer experiment with 
a fmger interface of thickness h separating two well-mixed convecting layers of thickness H .  

Experimental 
tank 

FIGURE 2. Schematic diagram of apparatus (side view) showing the polarimeter used to 
measure the vertical profile of sugar concentration. 

The development of the convection was observed optically using the shadow- 
graph technique described by Shirtcliffe & Turner (1970). Both the stationary 
interface and the strong convection above and below could be observed in this 
manner, and the thickness of the interface, h, was determined by judging where 
the horizontal motion in the turbulent convection came to rest at the upper and 
lower edges of the finger regioii . 

Measurements of the horizontal-average sugar concentration were made using 
a polarized laser beam and a rotating analyser as shown in figure 2. Since sugar 
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FIGURE 3. Vertical profile of sugar concentration PS as a function of depth at  t = '70 min 
in experiment 3, June 1970. P A S  is the density contrast due to  sugar across the interface 
and each point represents an individual measurement. 

is optically active, the plane of polarization of the beam is rotated through an 
angle which is proportional to  the concentration of sugar (Jenkins & White 
1957). By moving the laser beam up and down, horizontally averaged vertical 
profiles of ,5S could be obtained, and an example of such a profile is shown in 
figure 3. The vertical resolution is estimated to be about 1 mm. PAS (a! AT)  is de- 
fined as the difference in sugar (salt) concentration between the upper layer and 
lower layer, as shown for sugar in figure 3. 

The strong convection above and below the interface kept both deep layers 
quite well-mixed during the experiments, as is indicated by the measurements 
shown in figure 3. It can be reasonably assumed that T was as uniformly dis- 
tributed in these layers as S. The Concentration of T was then determined by 
measuring the indices of refraction of both top and bottom layers as functions 
of time. Knowing the index of refraction and the sugar concentration simul- 
taneously allowed determination of the T-concentration from graphs such as 
those of figure 18 of Shirtcliffe & Turner (1970). The index of refraction was 
determined by leaching a small sample from a mixed layer using a hypodermic 
syringe inserted well into the tank through a resealable rubber grommet located 
on the side of the tank. Several such grommets were located at  various depths 
to ensure that a sample from the mixed layer was obtained. The index of refrac- 
tion n was measured for each sample using an American Optical pocket re- 
fractometer. In  general, three individual readings a t  each point in time were 
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averaged together to give a single data point. Each value of n was then converted 
to the corresponding value aT as indicated above. aT was then plotted as a func- 
tion of time €or both top and bottom layers, and a smooth curve was fitted to 
these points to give aT(t) for each layer. At any instant of time, the difference 
between these two curves gave a AT at that time. 

Using the polarization technique, PS was determined for each layer to within 
3 %, and p AS was calculated to within about 5 yo, taking into consideration 
both instrument sensitivity and observed scatter. a AT was determined to about 
the same accuracy, and smoothing the measurements as a function of time im- 
proved the accuracy by at least a factor of 5. Nevertheless, a AT and PAS are 
quoted as known to within 5 %, and thus the values of N are quoted to within 
10 %. The interface thickness h could be measured to within about 5 % initially 
and to better than 1 % towards the end of the experiments. Plotting hvs. time 
showed that its growth was almost linear in time, and a smooth curve through 
the measured values removed much of the scatter due to uncertainties in in- 
dividual measurements. h could also be determined by noting the extent of the 
gradient region in profiles such as that in figure 3. Excellent agreement was found 
between this method and the shadowgraph technique described previously, and 
the data presented here result from the shadowgraph. Measurements of h will 
be considered accurate to within 1 % except, perhaps, near the beginning and 
end of the experiments. 

The values of the physical parameters K,  and K ,  for dilute solutions were 
taken from the handbooks and used without correction. K, = 0.5 x cm2/s 
and K ,  = 1.5 x 10-5cm2/s, and hence K,/K, x &. Their uncertainties are not 
Considered here, since it is expected that the solutions used are sufficiently dilute 
for these values to be valid. The kinematic viscosity, however, varies with sugar 
concentration and is a source of considerable uncertainty. The values cited in 
table 1 are the means of the values for the initial solutions of sugar and salt. 
Use of the mean value is supported by independent measurements of the viscosity 
of fluid sampled directly from the fhger region in earlier experiments. It can be 
expected, however, that v will vary significantly from one layer to the next, and 
possibly even horizontally from one finger to the next, and thus introduce an 
uncertainty of a t  least 10 yo in the final results. I n  summary, the quantities h, 
a AT and a AS were determined as functions of time, zero time being defined as 
that moment when pouring began. Typical experiments lasted for 6-12 h and 
measurements were made throughout these times. Four separate runs are re- 
ported here and the conditions for all experiments are listed in table 1. 

4. Results and discussion 

in figure 4. The slope is equal to y, since 
The flux ratio y is determined empirically by plotting a AT vs. PAS as shown 

aF, - d(aAT)/dt d(aAT) 
= & - d(,8AS)/dt = d(pas) ' 

Initial values occur at  the upper right corner for each curve, and progress in 
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FIGURE 4. Plot of E A T  vs. BAS.  Initial values ocour at upper right corner and experiments 
progress in time towards the lower left corner. 0 , 9  June ; 0,11 June : x 24 June ; A, 9 July. 

time towards the lower left corner as sugar is transported downwards and salt 
upwards. Points on each curve represent data taken over at least 6 h. During 
the major part of each run it can be seen that y (the dope) is the same constant 
for eachrun. Averaging the measurements from all four runs gives y = 0.92 2 %, 
which is in good agreement with the value cited by Stern & Turner (1969). 

The fact that y is a constant in this regime and not as given by (2.7) can be 
partially explained in terms of the collective instability model. As the fingers 
form, the density flux increases, reaching a critical value given by (2.9) a t  which 
the fingers break down, forming a turbulent convection pattern. This process 
takes place much more slowly when the initial value of N is near p-l, and can 
be easily observed by means of the shadowgraph. I n  the equilibrium state (with 
the finger interface separating strongly convecting layers) y remains constant 
even though /3Fs and aFF individually decrease. Equation (2.7) applies strictly 
only when there are fingers alone in the absence of strong convection, and, indeed, 
pi? + y as the convection dies out. It appears that if this is the case, as the 
experiments indicate, then the formation of convecting layers from salt fingers 
implies a limiting of the flux as indicated in (2.9). 

The departures from linearity at the lower left of figure 4 are almost certainly 
due to the approach of the system to the state in which the convection is dying 
out, the interface depth is approaching the depth of the tank and the collective 
instability model no longer applies. As the convection dies out, and the fingers 
extend throughout the entire region, the equilibrium model should apply 
throughout the entire region and the step structure disappears. 

The next step is to notice that the finger wavelength (L = A/27r) may be 
calculated from measurements of uAT, PAS and F, by means of (2.3). We let 
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0 

FIGURE 5. Calculated values of the wavelength h as funations of measured values of the 
finger length h. 0, 9 June; ., 11 June; x ,  24 June; A, 9 July. 

flz = PASlh and Fz = a AT/h so that 

h/hk = 27~(4K,&)* [PAS( 1 -pN) ] - i .  (4.2) 

During the course of a single experiment, PAS and (1 - p N )  both decrease 
slowly so that h/hi is a slowly increasing function of time. Measurements of 
PAS, aAT,  and h as functions of time permit the calculation of corresponding 
values of h to within about 6 %. A plot of h vs. h for all runs considered is shown in 
figure 5 and is presented in this manner in order to allow comparison with the 
results of Shirtcliffe & Turner (1970). 

If the right-hand side of our equation (4.2) were constant, we could compare its 
value with that given by the line drawn through their data, which has a slope 
o f t .  The fact that it is not constant probably indicates the degree of validity of 
the present model. The data in our figure 5 are consistent with the interpretation 
hlht = constant, but the important point is that they compare very well with 
those of Shirtcliffe & Turner between h = 1 ern and h = 3 cm, where both the 
present model and the data of Shirtcliffe & Turner are expected to be most 
reliable. In  fact, the uncertainties in the photographic data of Shirtcliffe & 
Turner for h < I cm and the trend of all the data for h > 3 cm seems to imply 
that the present model provides a reasonable description of what is happening. 
The agreement is clearly better than one might expect and strengthens the 
argument that at least a quasi-equilibrium state exists in the experimental model. 

The flux law may be tested by assuming that C in (2.14) is constant. If A is 
constant (which we will assume) then this is not strictly true, since C appears 
to be a slowly varying function of N and Llh. However, values of CIA tabulated 
in table 2 show that it varies by less than 10 % throughout most of the experiment, 
or for a period of 5-10h (discarding the initial value). It is therefore a very 
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Time [pAs h h (l--,uiV)* CIA 
(ah, X ( l - , u W l ~  (m) (em) x (N- 1) (h/27rh)4 (cmls) 7 

0 0.465 0.45 0.046 0.209 4.11 x 0.234 0.090 
50 0.417 0.45 0.051 0,328 4.72 0.423 0.124 

100 0.384 0.62 0.060 0-41 1 3.83 0.428 0.123 
150 0.357 0.85 0.070 0.491 3.08 0.412 0.116 
200 0.331 1.05 0.079 0.590 2.74 0.442 0.119 
250 0.316 1.25 0.087 0.618 2.46 0.415 0.113 
300 0.292 1.46 0.098 0.693 2.36 0.447 0.119 
350 0.275 1.66 0108 0.744 2.27 0.461 0,123 
400 0.256 1.87 0.119 0.784 2.17 0.463 0.124 

TABLE 2. Example of time development of conditions across the interface: 
Data for 24 June. ,u = Ks/& = Q; and N = aAT/j3hS. 

FIUURE 6. Plot of (/3AS)-*-((PAS);& 'us. ( C / A ) t  x 0, 9 June; 
0,  11 June; x ,  24 June; A ,  9 July. 
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good approximation to say that C is constant for periods of at least several 
minutes, and probably longer. Essentially, the system appears to move from 
one equilibrium state to another, as was noted by Stern & Turner. 

Thus, we may write d(pAS)/dt = - 2/ll$/H, where H is the thickness of the 
deep convecting layers above and below the interface. If C is constant, or slowly 
varying, this may be immediately integrated to give 

(PAS)-*- (PAS),* = 2C€/3H = A(213H) (CIA) t .  (4.3) 

H may also be considered constant during the times of interest in these ex- 
periments and is taken to be 1Ocm. CIA may now be calculated from the 
measured values of P A S ,  aAT and h, and the calculated values of L for each 
experiment (cf. table 2).  We next plot (pAS)-* - (pAS),* YS. (CtIA) x 10-3; the 
results are shown in figure 6. The data for each run can be treated as straight 
lines, except near the beginning and the end of each experiment, and the slope 
must be 2A/3H. Calculations from these data give A = 1-8 x with corre- 
sponding values of C ranging from 0.5 x The uncertainty, 
considering all possible sources, is estimated to be no greater than 10 yo. 

The primary result of these experiments is the verification of the flux law, 
equation (2.14). This equation is essentially the ‘$-law’ suggested by Stern & 
Turner with an explicit functional form for C. It appears that, as N changes, C 
also changes, but only gradually, and the horizontal wavelength h and the thick- 
ness of the interface adjust themselves accordingly. The 2 yo uncertainty in y, 
however, introduces a 20 yo uncertainty in I - y, and it is this quantity which 
appears in the flux law (2.14). Therefore the final determination of A cannot 
be certain to better than 20 yo even though the scatter is found to be much less. 
The fact that it is almost three orders of magnitude smaller than the value 
predicted by the collective instability model is due primarily to the assumptions 
leading to that model as described in $2.  

On the basis of these results, we may proceed to calculate the #-amplitude 
/lS, and hence the vertical velocity amplitude wo in the fingers. PS,, or more 
preciselytheratio of/lSo topAS, isgiven byequations (2.12) and (2.13). Although 
some systematic variations are observed, 7 appears to be constant for each run 
to well within I0 Yo. The values for one run are given in table 2 and the mean 
values for each run are given in table 1.  The conclusion is that the amplitude 
PS, is of the order of of the difference ,8 A S  and that the actual magnitude 
depends systematically on the initial concentration, (PAS),. Clearly this is only 
an estimate, since in reality /3So is probably a function of z. 

The vertical velocity amplitude wo can now be calculated from (2.4), and is 
found to be constant within 10 yo for all runs, viz., wo = 1.30 x lO-3cm/s. This 
value is somewhat more than an order of magnitude greater than the rate of 
growth of the interface, further indicating the limiting effects of the convection 
on the interface as a whole and the surprising efficiency of the fingers themselves 
in transporting S and T vertically. It is somewhat surprising to find so little 
deviation in this value over such a wide variation of parameters. Perhaps further 
refinements of the experiment will reveal systematic variations in w,, but they 
are not apparent here. Finally, we may estimate the efficiency of transport in 

to 0-75 x 
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another way, computing a ‘Nusselt’ number of S-transport by comparing the 
total flux PF, with purely diffusive flux ,8F$ = Ks,8 AS/h. The ratio N, can then 
be defined as 

N, = Fs/F$ = [ A ( N -  1)/(1 -?)I [gv2h4(I -N)/3AS/64n4Kih]*. (4.4) 

For a typical experiment N ,  is of the order of 50, indicating that the vertical 
flux due to fingering is approximately two orders of magnitude greater than it 
would be if diffusion were the only transport mechanism. 

5. Summary and conclusions 
The primary discrepancies between these results and those of previous authors 

are the fact that A is considerably less than the predicted value of order 1 and 
that the value of C is more than an order of magnitude smaller than that de- 
termined by Stern & Turner (1969). The former is probably due to  the nature of 
the assumptions in the collective instability model, which have been discussed 
previously. It is possible that the latter is due to the difference in procedure 
between these experiments and those of Stern & Turner. The total time of their 
experiments was reported to be about 30min (see figure 3 and table 1 of their 
paper). In  our experiments, although this is not apparent in figure 6, the quasi- 
equilibrium state was not well established for at least 50-100 min (the first two 
points for each set in figure 6). If a slope is measured in this early time-dependent 
rdgime, a value of A as much as two or three times larger than that cited above 
can be obtained, and it is likely that measurements between t = 0 and t = 50 min 
would give values of A as high as which would yield a value of C in reasonable 
agreement with that of Stern & Turner. In  general, the assumption that the 
finger interface in a two-layer model passes through a succession of quasi- 
equilibrium states is found to provide an adequate, internally consistent descrip- 
tion of salt fingers for the case when the two solutes are sugar and salt. A flux 
law is derived and the constants are evaluated experimentally. The model is 
found to break down somewhat near the beginning and end of the experiments, 
but predicts measured results throughout a wide range of conditions. The data 
generally apply to the finger interface during the time in which it is well estab- 
lished, with strong larger scale convection above and below. Discrepancies near 
the beginning and end of the experiments can be attributed to non-equilibrium 
and time-dependent effects. Some aspects of the initial growth process have been 
observed qualitatively and photographed extensively (Lambert 197 I). Once 
established, the finger interface transports just enough buoyancy to maintain the 
larger scale convection while still preserving the finger interface. As time goes 
on, a AT and /3 A S  decrease and the parameters of the interface slowly change, 
but even for periods of several minutes, the equilibrium model appears to provide 
an adequate description of the kinematics of the flow. As the large-scale con- 
vection dies out, the equilibrium model of fingers becomes quantitatively more 
applicable. 

It is possible that this model may apply to the heat-salt system with perhaps 
some changes in the values of the constants A and y and the appropriate physical 
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parameters, but with the form of the equations remaining the same. Measure- 
ments in a heat-salt system are needed to determine these values and thus test 
the validity of extending the model to describe the oceanic microstructure. 
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